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Abstract

Neural networks can provide effective predictive models for complex processes that are poorly described by first principle models, such as
wastewater biological treatment systems. In this paper multilayer perceptron (MLP) and functional-link neural networks (FLN) are developed
to predict inlet and outlet biochemical oxygen demand (BOD) of an aerated lagoon operated by International Paper of Brazil. In Part I,
predictive models for both inlet and outlet BOD for the aerated lagoon were developed using linear multivariate regression techniques. For the
current case study, MLP networks are the best choice for the prediction models. When only a relatively small number of samples is available,
substantial improvement in inlet and outlet BOD prediction is shown for both FLN and MLP modeling using a reduced input variable set that
was generated using partial least squares (PLS). Thus, this paper provides a novel approach for developing PLS—FLN model structures.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction Although a neural network is an empirical model that
is obtained by fitting data, some notable differences ex-
Neural networks have been widely used for extracting in- ist between neural networks and typical empirical models.
formation from data in the form of predictive input—output As a result, neural networks offer distinct advantages in
models, or as a way to efficiently represent the input space.some areas but have some limitations in others, as shown in
One of their advantages is that they provide a very general Section2.
framework which can, in principle, approximate any type of Developments over the last several years have provided
nonlinearity in the dat§l]. Multivariate statistical methods  significant insight into the nature of neural learning through
provide alternative to neural networks. Nevertheless, multi- proof of mathematical properti¢2] and examination of the
variate statistical methods have mainly been used to establishrelationship between neural learning and mathematical ap-
linear relationships between variables, thus restricting their proximation theory[3,4]. However, these efforts have fo-
applicability and for small regions of low nonlinearity be- cused on only neural or statistical methods, and the few cases
tween predictor and predictive variables. for which there is cross-fertilization between the two involve
applications to only analytical functiofs,6] or to simulated
—_— ) process datf/]. The present research provides a unigue uni-
" Corresponding author. . . fying view that evaluates both neural networks and linear
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(M. Mori), burns@igm.unicamp.br (R.E. Bruns). dustrial case study.

1385-8947/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cej.2004.06.012



62 K.P. Oliveira-Esquerre et al. / Chemical Engineering Journal 105 (2004) 61-69

The primary goal of this research is to construct accurate

models to predict inlet and outlet BOD of an aerated lagoon l Xg v l X,
operated by International Paper of Brazil. Linear steady-state
and dynamic models have been constructed and their results FUNCTIONAL EXPANSION

are presented in a companion paj@rHere, functional-link
(FLN) and multilayer perceptron (MLP) neural networks are
used as nonlinear modeling techniques for BOD prediction.
Both techniques are attractive, due to their widely recognized
abilities to learn nonlinear relations between input and out-
put data. The potential improvement for the FLN and MLP
techniques is also evaluated when partial least squares (PLS)
is used to preprocess their input data.

The structure of this paper is as follows. In Sectdn Fig. 1. General structure of a functional-link neural network.
some advantages and drawbacks of neural networks and sta-
tistical methods are presented. A brief description of the has been shown to be a powerful linear regression technique
industrial data and the methodology used is given in Sec- for problems in which the data are noisy and highly corre-
tion 3. In Section4 the results of neural network model- lated and in which there is a limited number of observations
ing are reported; in this section the sample prediction ac- [12].
curacy of linear models and neural networks are also com-  The main, well-known disadvantages of neural network

pared for the case study. Some conclusions are presented iffaining are that it requires large quantities of experimental
Sectionb. data and the training of the network can take too long to be

practical. Furthermore, its nonlinear approximation function
can cause local minimum problems.
2. Neural network versus multivariate linear Multilayer perceptron neural networks (MLP) have been
regression modeling approaches successfully used in modeling biological wastewater treat-
ment processe$12—20] However, functional-link neu-
Because neural networks are massively parallel, they haveral networks (FLN)[10] have received relatively little
a better filtering capacity and generally perform better than attention.
traditional linear models with noisy or incomplete d§@ The FLN is a neural network with no hidden layers that
The trained model may be continuously adapted to new dataiS trained using supervised learning. The input is “enhanced”
without the need of storing previous data. Neural networks by generating additional terms via a transformation rule,
can be designed to periodically update their input—output per- Such as a polynomial expansion. The idea is to increase the
formances, resulting in continuous, on-line, self-correcting dimensionality of the feature space without requiring any
models. Most applications of linear statistical methods are additional information. These enhanced values are passed
for static, non-adaptive modeling, although modifications for t0 @ summation node (the output), which transforms these
recursive and adaptive modeling have been devj5e3]. weighted values via a nonlinear activation function. Ac-
Neural networks can arbitrarily approximate any nonlinear cordingly, the main advantages of the FLN are that its use
input_output re|ation5hip and can map many independentnot only SImp'IerS the network architecture and the train-
variables with as many dependent variables as needed, whildng algorithm but can also improve network performance
most traditional liner modeling tools map at most three de- [21].
pendent variablef9]. However, as neural networks function A general structure of a FLN is shown ig. 1 x andy;
essentially as black boxes, the interpretation of these models(X) are the input and output vectors, respectively, apxjiis
is often difficult and gives limited physical insight into the the new vector generated by the functional expansion of the
data[10]. On the other hand, linear multivariate statistical input space of dimensiom onto a new space of increased
methods provide physically interpretable models. The algo- dimensionM (M >n;). The input-output relationship of the
rithms used for determining the model parameters for large FLN is shown in
data sets build the models in a stepwise manner and have

M
guaranteed convergence. yi(x) = Z wiihi(x), l<i<M (1)
j=1

Even though traditional linear multivariate statistical
methods are unable to capture highly nonlinear behavior, the
models are usually not continuously adapted to new data. The theoretical foundations of FLN are described elsewhere
However, based on the assumption that the underlying non-[1,22,23] Henrique[24] proposed a modification of the FLN
linear relationship can be locally approximated by a linear structure, where the output given by Eg) is transformed
modeL multivariate regression techniques may be used to apby an invertible nonlinear activation function. The merits of
proximate complex relationships in small intervals of the pre- this network output transformation can be found in Costa et
dictor variableg11]. Partial least squares (PLS) regression al.[21,22] Harada et a[[25] and Henriques et a26].
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Table 1

M
. - T
Simple description of data sets 1 and 2 y = f(T) =log (1 T) and T = E wijhj(x) 2
Parameters Description Datasetl Dataset2 - j=1

Predicted variables MLP training is carried out using the standard backprop-

BODi, Inlet wastewater BOD (mg/L . . : . o
BOD':m Suilevfsvsagxsvae:er Boé“}f’ng,)u :; j agation algorithm. The sigmoidal function is used as the
bredicted variables transfer function in both the hidden and output layers. The
coD Inlet wastewater COD (mg/L) J J delta—bar—delta (DBD) techniqu28] is used to determine
coL Color (mg/L) J J the best ANN configuration, namely, the optimum number of
COND  Conductivity (1S/cm at 20C) Vi v nodes in the hidden layer. The relative performance of dif-
FR Inlet flow rate (M/day) _ v v ferent MLP networks is compared by evaluating the mean
m'\" 'Irr‘]'fttir_?mton'arfonr?f”tt_ra“o;(’/“Lg’ b - v squared error using an independent validation data set, and
PAP Paeper' ;?ozﬁgngﬁ (t/rg;;)n (mglt) \/_ :; the network having the smallest error is selected. The perfor-
pH pH J J mance of the selected network is then confirmed by measur-
PULP  Pulp production (t/day) Vi Vi ing its performance on a third-independent set of data called
RF Rainfall (mm/day) - v the test set. A stop criterion based on the mean square error
T Temperature°C) v v e . o
_ (MSE) for the validation data set, instead of the training data
TSS Inlet total suspended solids (mg/L) — N

Sota o1 s of 1092 s (782 ol 312 st | set, ensures model generalization.

a'a Set & COnsISts o samples (782 samples plus 312 test samples) - 1o p) g technique is used to reduce the number of input

and the ratios of data for learning, validation and test are 4:1:2. Data set 2 . A .

consists of a total of 79 samples and the ratio of learning data is 4:1. variables in Order. to prune M.LP and FLN moqelmg St.ruc'
tures. NeuroSolutions Professional, acommercially available
neural network software package, and a MATLAB computer

3. Methodology program developed by Henriq(®4] are used for MLP and

FLN modeling, respectively.

In this paper, FLN and MLP models are developed, val-
idated and tested using both data sets 1 and 2, described in
Part 1[8]. Table 1provides a simple description of these data 4. Discussions and results
sets. As mentioned in Par{8], data set 1 was used to de-
velop dynamic models. Two test sets, each with 156 samples,4.1. Modeling data set 1
were obtained by linearly interpolating portions of the origi-
nal industrial data that were initially excluded due to missing ~ The BOD prediction results are presented in terms of the
values. multiple correlation coefficient®2, in %) and mean square
The FLN inputs are expanded with a second-degree poly- error (MSE) for one validation and two test data sets, each
nomial to generate nonlinear monomials, and the orthogonalwith 156 points from data set 1.
least-squares estimator proposed by Billings efa] is First- and second-order FLN models were initially con-
used to calculate the network weights and to eliminate the structed for inlet BOD and their results are shown in
monomials which are not significant in explaining the output Tables 2 and 3respectively. The corresponding results for
variance. This approach reduces the size and complexity ofoutlet BOD are shown ifTables 4 and 5The number of

the neural network and avoids overfitting the dgd,24] input variables used to develop each model is given right
The sigmoid activation transfer functian(Eg. (2)) is used after its name. These results indicate that using PLS to
to transform the network output (EL)): reduce the number of network inputs improves the accu-
Table 2
Validation and test results of the first-order FLN models and data set 1 (inlet BOD)
Model Validation Test R2+s MSE + 52
R? MSE? 23 MSE? R? MSE?
Steady-state modeling
FLN-8 (p=09) 46.1 25.8 44.8 20.5 54.8 18.2 48:65.4 21.5+ 3.9
PLS-FLN-8 p=9) 46.4 22.1 45.7 23.0 54.5 13.6 489 19.6+ 5.2
PLS-FLN-3 p=4) 46.7 22.4 45.2 23.4 53.2 13.9 48:44.3 19.9+ 5.2
Dynamic modeling
FLN-16 (p=17) 44.7 24.6 45.0 19.9 55.4 15.5 48:46.1 20.0+ 4.6
PLS-FLN-16 p= 17) 45.9 24.9 46.2 27.9 55.6 13.7 4255 222475
PLS-FLN-3 p=4) 45.2 24.3 44,5 28.4 54.8 13.8 48258 222475

p: number of parameters estimated during training.
a These results have to be multiplied by *Go obtain MSE values for normalized data.
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Table 3

Validation and test results of the second-order FLN models and data set 1 (inlet BOD)

Model Validation Test R+ MSE + 52

R MSE? R MSE? R MSE?

Steady-state modeling
FLN-8 (p = 45) 34.6 335 41.2 36.0 46.3 23.0 4&5.9 30.8+ 6.9
PLS—FLN-8 p =45) 37.6 39.0 475 24.2 38.0 18.8 4105.6 27.3+10.5
PLS—-FLN-3 p=10) 47.3 20.7 43.3 21.6 54.9 13.7 4&%.9 18.7+ 4.3

Dynamic modeling
FLN-16 (p = 153) 26.6 62.7 10.8 92.4 229 33.6 2&:8.3 62.9+29.4
PLS—-FLN-16 p=153) 275 54.2 10.8 83.3 24.1 33.3 2a:8.8 56.9+ 25.1
PLS—-FLN-3 p=10) 47.4 233 43.2 27.4 53.9 13.9 4&5 .4 21.5+ 6.9

p: number of parameters estimated during training.
a These results have to be multiplied by *Go obtain MSE values for normalized data.

Table 4

Validation and test results of the first-order FLN models and data set 1 (outlet BOD)

Model Validation Test R+ MSE + 52

R? MSE? R MSE? R MSE?

Steady-state modeling
FLN-8 (p=9) 37.6 20.6 27.4 26.1 38.8 25.2 34:66.3 24.0+ 3.0
PLS-FLN-8 p=9) 42.2 21.7 30.1 26.9 39.7 33.2 3&3%.4 27.3+5.8
PLS-FLN-3 p=4) 41.3 23.1 27.9 28.0 38.7 34.8 36:07.1 28.6+ 5.9

Dynamic modeling
FLN-16 (p=17) 39.2 20.6 29.8 25.2 44.8 25.0 3&9.6 23.6+ 2.6
PLS-FLN-16 p=17) 41.2 21.0 34.9 23.1 47.8 39.2 4135 27.8+10.0
PLS-FLN-3 p=4) 41.7 21.6 30.6 22.6 41.6 21.3 38:06.4 21.8+ 0.7

p: number of parameters estimated during training.
a These results have to be multiplied by *Go obtain MSE values for normalized data.

racy of the second-order FLN models. For first-order FLN, Despite the use of the validation data set to tune the main
modest improvement in the accuracy of validation and test MLP design parameter (number of nodes in the hidden layer),
data sets is apparent using the PLS technique to preprocessignificant differences between validation and test results are
inputs. only observed in MLP models and outlet BOD prediction.
MLP models were developed next. The variation in MSE A closer examination ofables 2—#eveals that for both
as a function of the number of hidden neurons was used toFLN and MLP approaches, dynamic modeling gives the best
identify the best MLP and PLS—MLP topologies. The ratio of results for outlet BOD prediction, in contrast to inlet BOD.
learning data to validation data was 4Tables 6 and g8how The relationship between the outlet BOD and the inlet vari-
the best results and model structures for inlet and outlet BOD, ables is indeed influenced by the biological complexity and
respectively; the number of input variables used to develop physical structure of the aerated lagoon. These results agree
each model is given right after its name. In this case, PLS did with earlier results obtained using linear regression tech-

not improve the MLP nonlinear mapping. niques[8].

Table 5

Validation and test results of the second-order FLN models and data set 1 (outlet BOD)

Model Validation Test R+ MSE + 52

R MSE? R2 MSE? R2 MSE?

Steady-state modeling
FLN-8 (p = 45) 36.3 26.0 28.2 36.1 B 329 33.5+ 4.6 31.7£5.2
PLS—FLN-8 p =45) 45.3 24.7 30.4 46.7 a 322 39.0£ 7.7 345+ 11.2
PLS-FLN-3 p =10) 47.1 22.1 34.3 34.2 49 404 40.5+ 6.4 322+ 9.3

Dynamic modeling
FLN-16 (p = 153) 222 67.8 104 47.6 5 87.2 12.7+ 8.6 67.5+ 19.8
PLS-FLN-16 p =153) 18.6 64.8 211 55.0 B 1180 18.1+ 3.3 79.3+£ 33.9
PLS-FLN-3 p =10) 47.2 214 34.8 21.2 o 212 43.1+7.2 21.3+0.1

p: number of parameters estimated during training.
a These results have to be multiplied by #Go obtain MSE values for normalized data.
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Table 6

Validation and test results of the MLP models and data set 1 (inlet BOD)

Model Validation Test R+ MSE # 52

R? MSE? 23 MSE? R? MSE?

Steady-state modeling
MLP-8 (n=10,p=101) 60.1 D 59.8 111 65.3 10.3 61F%3.1 101+ 1.1
PLS-MLP-8 6 =4,p=41) 46.9 1% 444 16.7 54,5 13.8 48465.3 144+ 2.1
PLS-MLP-3 6=10,p=51) 44.2 136 40.9 223 53.0 17.2 46466.3 17.7£ 4.4

Dynamic modeling
MLP-16 (n = 8,p = 145) 52.0 in 55.5 12.3 55.6 134 54421 12.3+1.2
PLS-MLP-16 =4,p=73) 51.0 134 47.2 155 42.1 17.8 46:84.5 15.6+ 2.2
PLS-MLP-3 6=10,p=51) 46.6 124 37.1 18.2 56.0 13.2 4669.5 146+ 3.1

p: number of parameters estimated during trainimgyumber of neurons in hidden layer.
a These results have to be multiplied by fGo obtain MSE values for normalized data.

Table 7

Validation and test results of the MLP models and data set 1 (outlet BOD)

Model Validation Test R+ MSE + 52

R MSE? R? MSE? R MSE?

Steady-state modeling
MLP-8 (n=8,p=281) 49.8 16.6 30.7 245 46.1 23.6 42£210.1 21.6+4.3
PLS-MLP-8 6=8,p=81) 37.8 22.0 25.1 325 33.1 32.8 32®.4 29.1+ 6.2
PLS-MLP-3 6=6,p=231) 39.7 43.3 29.8 59.1 35.6 57.3 35%%.0 53.2+ 8.6

Dynamic modeling
MLP-16 (h=3,p=55) 56.7 14.4 35.6 23.7 47.9 23.1 46:710.6 20.4+5.2
PLS-MLP-16 =6, p = 109) 49.4 175 32.7 27.4 31.0 31.0 3#&70.2 25.3+7.0
PLS-MLP-3 0=6,p=231) 43.4 44.1 35.2 35.2 49.2 33.1 42:67.0 37.5+5.8

p: number of parameters estimated during trainimgyumber of neurons in hidden layer.
a These results have to be multiplied by fao obtain MSE values for normalized data.

Considering both validation and test results, the steady- Figs. 3 and £ompare predicted and measured values for both
state MLP model with 10 hidden nodes gives the best models and for the validation and test sets. It can be seen that
predictions for inlet BOD. For outlet BOD prediction, test these models can reproduce the overall variation observed in
results indicate that the dynamic MLP with three nodes and the bioprocess for the period considered, especially for the
PLS-FLN with three LVs are the best models. However, case ofinlet BOD prediction. More than 90 and 85%, for inlet
validation results indicate that MLP gives the best outlet and outlet BOD, respectively, of the data contained relative
BOD prediction performance. deviations of calculated from measured values smaller than

Comparisons of the best models for inlet and outlet BOD 10% for both output variables. The time series plots of the
are shown inFig. 2 for the validation and test sets. Both residuals do not appear to have any systematic structure, in-
the slope and the correlation coefficient for the straight lines dicating that the models fit the data well. There does seem to
indicate good agreement between predictions and the databe a slight tendency for negative deviation&ig. 2for small

0.8 0.8
o)
3 @
s ks
© 5
£ (@]
3 5
o s
g : 2
o Regression o Regression
LR 95% Prediction Interval s I e 95% Prediction Interval
0.0+— : : : ‘ : 0.0+— : : . . :
02 03 04 05 06 07 02 03 04 05 06 07
(a) Measured Inlet BOD (b) Measured Outlet BOD

Fig. 2. Relation between predicted vs. measured BOD (solid line). Upper and lower dashed lines indicate the 95% prediction estimation intiimgatioaccor
(a) steady-state MLP model with 10 nodes for inlet BOD and (b) dynamic MLP model with three nodes for outlet BOD.
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Fig. 3. Time series plot of (a) measured and predicted inlet BOD for steady-state MLP model with 10 nodes and (b) residuals—upper and lower dashed line:
indicate the 95% confidence interval.
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Fig. 4. Time series plot of (a) measured and predicted outlet BOD for dynamic MLP model with three nodes and (b) residuals—upper and lower dashed line:

indicate the 95% confidence interval.
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Table 8
Validation results of the FLN and MLP models and data set 2 (inlet and outlet BOD)
Inlet BOD Outlet BOD
Model R? MSE? Model R MSE?
Steady-state models from data set 2 FLNfAZ (3P 487 152 FLN-12 = 13f 57.7 183
PLS-FLN-12 p=13f 487 152 PLS-FLN-12p = 13p 684 192
PLS-FLN-4 p = 5)° 482 146 PLS—FLN-4 p=5)° 713 212
FLN-12 (p=27f 0.2 1050 FLN-12 p=31f 7.2 269
PLS-FLN-12 p = 29f 16.2 628 PLS-FLN-12 =31y 9.9 872
PLS-FLN-4 p = 15f 383 338 PLS-FLN-4 p =15y 63.7 236
MLP-12 (h=3,p=43) 660 105 MLP-12 0= 3,p=43) 660 41
PLS-MLP-12 1=3,p=43) 625 116 PLS-MLP-12 0 =3,p=43) 744 6.3
PLS-MLP-4 6=2,p=13) 675 9.7 PLS-MLP-4 0 =6,p=37) 748 5.3
Best model from data set 1 MLP-8 € 10,p=101) 813 6.9 MLP-16 (h=3,p=55) 697 6.8

p: number of parameters estimated during trainimgyumber of neurons in hidden layer.
a These results have to be multiplied by fGo obtain MSE values for normalized data.
b First-order FLN.
¢ Second-order FLN.

values of measured inlet and outlet BOD. This may indicate 4.3. Neural network versus multiple linear regression
that a different model is necessary to provide more accurateapproaches
predictions for small BOD values.
Tables 2 and 3 of Part[B] show the results obtained for
4.2. Modeling data set 2 inlet and outlet BOD prediction, respectively, using multi-
variate regression techniques and data set 1, while Table 4 of
The FLN and MLP results for inlet and outlet BOD are Part I[8] shows the results for data set 2.
shown inTable 8 The number of input variables used to de- Considering the results obtained using data set 1, it can be
velop each model is given right after its name. The prediction observed that the MLR model performs slightly better than
results are presented in terms of the multiple correlation co- any FLN model for inlet BOD prediction. The same result
efficient (R2, in %) and mean square error (MSE) for one occurs when the most important LVs are used for either PLS
validation data set that consisted of 15 samples from data seor FLN modeling. For outlet BOD prediction, no significant
2. The prediction results for this reduced data set are alsodifference is observed between MLR and the FLN models;
shown for the best inlet and outlet BOD models developed but the PLS—FLN models of first- and second-order perform
from data set 1. slightly better than the PLS model, mainly for dynamic mod-
The performance of both first-order FLN and MLP models eling.
is substantially improved for outlet BOD prediction using the The most significantimprovementin inlet and outlet BOD
reduced PLS input data set. Onthe other hand, first-order FLN prediction is observed when MLP modeling is used instead of
and MLP models show modest improvement in inlet BOD MLR. PLS—-MLP models with three LVs only perform better
prediction in the same situation. The most notable improve- than PLS models for outlet BOD prediction.
ment inR? and MSE occurs for second-order FLN models. For data set 2, the PLS approach for input reduction pro-
In this case, the FLN method is not very good when the orig- vided better results for neural networks, but was less success-
inal variables are its inputs, but its prediction performance is ful for linear regression techniques.
significantly improved when only the most significant LVs It should be noted that, in theory, using an infinite number
are used. of independent variables to explain the change in a depen-
The best validation results are obtained using the dent variable would result in &R of one for the modeling
PLS-MLP model with two and six hidden nodes for inlet data set. In other words, tH&? value can be manipulated
and outlet BOD prediction, respectively. Nevertheless, the and should be suspect. The adjusRéd[29] value can be
best model obtained for data set 1, MLP-8, results in better used as an attempt to correct this shortcoming, because it
inlet BOD predictions than all of the models developed from will not always increase when additional model parameters
data set 2. are added. In contrast &7, the adjustedr? only increases
For outlet BOD, the PLS—MLP model with six nodes for if the additional model parameters improve the regression
data set 2 shows better results than those obtained with theesults significantly in order to compensate for the increase
best model for data set 1. In any event, it is surprising that the in regression degrees of freedom. Nevertheless, there is no
models constructed with such a reduced number of samplessimilar statistical parameter to perform reliable comparative
can predict reliable values of inlet and outlet BOD, especially analyses of the predictive performances of neural network
in this case in which only historical data are available. models, and the methods proposed in the literature usually
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lead to contradictory results. As is done in this paper, the Brazil for providing the industrial data, and Edson Guaracy
comparative analysis of statistical and neural network mod- Lima Fujita and Aline C. Costa (UNICAMP) and Fred Lo-
els should be based &1 values estimated from the validation  quasto |1l (UCSB) for their valuable comments.

(and test) data sets.
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