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Abstract

Neural networks can provide effective predictive models for complex processes that are poorly described by first principle models, such as
w eveloped
t In Part I,
p es. For the
c s available,
s le set that
w ctures.
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astewater biological treatment systems. In this paper multilayer perceptron (MLP) and functional-link neural networks (FLN) are d
o predict inlet and outlet biochemical oxygen demand (BOD) of an aerated lagoon operated by International Paper of Brazil.
redictive models for both inlet and outlet BOD for the aerated lagoon were developed using linear multivariate regression techniqu
urrent case study, MLP networks are the best choice for the prediction models. When only a relatively small number of samples i
ubstantial improvement in inlet and outlet BOD prediction is shown for both FLN and MLP modeling using a reduced input variab
as generated using partial least squares (PLS). Thus, this paper provides a novel approach for developing PLS–FLN model stru
2004 Elsevier B.V. All rights reserved.
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. Introduction

Neural networks have been widely used for extracting in-
ormation from data in the form of predictive input–output
odels, or as a way to efficiently represent the input space.
ne of their advantages is that they provide a very general

ramework which can, in principle, approximate any type of
onlinearity in the data[1]. Multivariate statistical methods
rovide alternative to neural networks. Nevertheless, multi-
ariate statistical methods have mainly been used to establish
inear relationships between variables, thus restricting their
pplicability and for small regions of low nonlinearity be-

ween predictor and predictive variables.
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Although a neural network is an empirical model t
is obtained by fitting data, some notable differences
ist between neural networks and typical empirical mod
As a result, neural networks offer distinct advantage
some areas but have some limitations in others, as sho
Section2.

Developments over the last several years have prov
significant insight into the nature of neural learning thro
proof of mathematical properties[2] and examination of th
relationship between neural learning and mathematica
proximation theory[3,4]. However, these efforts have f
cused on only neural or statistical methods, and the few
for which there is cross-fertilization between the two invo
applications to only analytical functions[5,6] or to simulated
process data[7]. The present research provides a unique
fying view that evaluates both neural networks and lin
multivariate regression techniques in a well-documente
dustrial case study.
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The primary goal of this research is to construct accurate
models to predict inlet and outlet BOD of an aerated lagoon
operated by International Paper of Brazil. Linear steady-state
and dynamic models have been constructed and their results
are presented in a companion paper[8]. Here, functional-link
(FLN) and multilayer perceptron (MLP) neural networks are
used as nonlinear modeling techniques for BOD prediction.
Both techniques are attractive, due to their widely recognized
abilities to learn nonlinear relations between input and out-
put data. The potential improvement for the FLN and MLP
techniques is also evaluated when partial least squares (PLS)
is used to preprocess their input data.

The structure of this paper is as follows. In Section2
some advantages and drawbacks of neural networks and sta-
tistical methods are presented. A brief description of the
industrial data and the methodology used is given in Sec-
tion 3. In Section4 the results of neural network model-
ing are reported; in this section the sample prediction ac-
curacy of linear models and neural networks are also com-
pared for the case study. Some conclusions are presented in
Section5.

2. Neural network versus multivariate linear
regression modeling approaches
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Fig. 1. General structure of a functional-link neural network.

has been shown to be a powerful linear regression technique
for problems in which the data are noisy and highly corre-
lated and in which there is a limited number of observations
[12].

The main, well-known disadvantages of neural network
training are that it requires large quantities of experimental
data and the training of the network can take too long to be
practical. Furthermore, its nonlinear approximation function
can cause local minimum problems.

Multilayer perceptron neural networks (MLP) have been
successfully used in modeling biological wastewater treat-
ment processes[12–20]. However, functional-link neu-
ral networks (FLN) [10] have received relatively little
attention.

The FLN is a neural network with no hidden layers that
is trained using supervised learning. The input is “enhanced”
by generating additional terms via a transformation rule,
such as a polynomial expansion. The idea is to increase the
dimensionality of the feature space without requiring any
additional information. These enhanced values are passed
to a summation node (the output), which transforms these
weighted values via a nonlinear activation function. Ac-
cordingly, the main advantages of the FLN are that its use
not only simplifies the network architecture and the train-
ing algorithm but can also improve network performance
[
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Because neural networks are massively parallel, they
better filtering capacity and generally perform better

raditional linear models with noisy or incomplete data[9].
he trained model may be continuously adapted to new
ithout the need of storing previous data. Neural netw
an be designed to periodically update their input–outpu
ormances, resulting in continuous, on-line, self-correc
odels. Most applications of linear statistical methods

or static, non-adaptive modeling, although modifications
ecursive and adaptive modeling have been devised[5,9].
eural networks can arbitrarily approximate any nonlin

nput–output relationship and can map many indepen
ariables with as many dependent variables as needed,
ost traditional liner modeling tools map at most three
endent variables[9]. However, as neural networks functi
ssentially as black boxes, the interpretation of these m

s often difficult and gives limited physical insight into t
ata[10]. On the other hand, linear multivariate statist
ethods provide physically interpretable models. The a

ithms used for determining the model parameters for l
ata sets build the models in a stepwise manner and
uaranteed convergence.

Even though traditional linear multivariate statisti
ethods are unable to capture highly nonlinear behavio
odels are usually not continuously adapted to new
owever, based on the assumption that the underlying

inear relationship can be locally approximated by a lin
odel, multivariate regression techniques may be used
roximate complex relationships in small intervals of the
ictor variables[11]. Partial least squares (PLS) regress
21].
A general structure of a FLN is shown inFig. 1. x andyi

x) are the input and output vectors, respectively, andh(x) is
he new vector generated by the functional expansion o
nput space of dimensionn1 onto a new space of increas
imension,M (M>n1). The input–output relationship of t
LN is shown in

i(x) =
M∑

j=1

wijhj(x), 1 ≤ i ≤ M (1)

he theoretical foundations of FLN are described elsew
1,22,23]. Henrique[24] proposed a modification of the FL
tructure, where the output given by Eq.(1) is transformed
y an invertible nonlinear activation function. The merits

his network output transformation can be found in Cos
l. [21,22], Harada et al.[25] and Henriques et al.[26].
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Table 1
Simple description of data sets 1 and 2

Parameters Description Data set 1 Data set 2

Predicted variables
BODin Inlet wastewater BOD (mg/L)

√ √
BODout Outlet wastewater BOD (mg/L)

√ √

Predicted variables
COD Inlet wastewater COD (mg/L)

√ √
COL Color (mg/L)

√ √
COND Conductivity (�S/cm at 20◦C)

√ √
FR Inlet flow rate (m3/day)

√ √
NAM Inlet ammonia concentration (mg/L) –

√
NN Inlet nitrate concentration (mg/L) –

√
PAP Paper production (t/day)

√ √
pH pH

√ √
PULP Pulp production (t/day)

√ √
RF Rainfall (mm/day) –

√
T Temperature (◦C)

√ √
TSS Inlet total suspended solids (mg/L) –

√

Data set 1 consists of 1094 samples (782 samples plus 312 test samples)
and the ratios of data for learning, validation and test are 4:1:2. Data set 2
consists of a total of 79 samples and the ratio of learning data is 4:1.

3. Methodology

In this paper, FLN and MLP models are developed, val-
idated and tested using both data sets 1 and 2, described in
Part I[8]. Table 1provides a simple description of these data
sets. As mentioned in Part I[8], data set 1 was used to de-
velop dynamic models. Two test sets, each with 156 samples,
were obtained by linearly interpolating portions of the origi-
nal industrial data that were initially excluded due to missing
values.

The FLN inputs are expanded with a second-degree poly-
nomial to generate nonlinear monomials, and the orthogonal
least-squares estimator proposed by Billings et al.[27] is
used to calculate the network weights and to eliminate the
monomials which are not significant in explaining the output
variance. This approach reduces the size and complexity of
the neural network and avoids overfitting the data[21,24].
The sigmoid activation transfer functionT (Eq. (2)) is used
to transform the network output (Eq.(1)):

y = f (T ) = log

(
T

1 − T

)
and T =

M∑
j=1

wijhj(x) (2)

MLP training is carried out using the standard backprop-
agation algorithm. The sigmoidal function is used as the
transfer function in both the hidden and output layers. The
delta–bar–delta (DBD) technique[28] is used to determine
the best ANN configuration, namely, the optimum number of
nodes in the hidden layer. The relative performance of dif-
ferent MLP networks is compared by evaluating the mean
squared error using an independent validation data set, and
the network having the smallest error is selected. The perfor-
mance of the selected network is then confirmed by measur-
ing its performance on a third-independent set of data called
the test set. A stop criterion based on the mean square error
(MSE) for the validation data set, instead of the training data
set, ensures model generalization.

The PLS technique is used to reduce the number of input
variables in order to prune MLP and FLN modeling struc-
tures. NeuroSolutions Professional, a commercially available
neural network software package, and a MATLAB computer
program developed by Henrique[24] are used for MLP and
FLN modeling, respectively.
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Table 2
Validation and test results of the first-order FLN models and data set 1 (inlet

Model Validation Test

R2 MSEa R2 MS

S
2
2
2

D
1
2
2

p
norma
teady-state modeling
FLN-8 (p = 9) 46.1 25.8 44.8
PLS–FLN-8 (p = 9) 46.4 22.1 45.7
PLS–FLN-3 (p = 4) 46.7 22.4 45.2

ynamic modeling
FLN-16 (p = 17) 44.7 24.6 45.0
PLS–FLN-16 (p = 17) 45.9 24.9 46.2
PLS–FLN-3 (p = 4) 45.2 24.3 44.5

: number of parameters estimated during training.
a These results have to be multiplied by 10−4 to obtain MSE values for
. Discussions and results

.1. Modeling data set 1

The BOD prediction results are presented in terms o
ultiple correlation coefficient (R2, in %) and mean squa
rror (MSE) for one validation and two test data sets,
ith 156 points from data set 1.
First- and second-order FLN models were initially c

tructed for inlet BOD and their results are shown
ables 2 and 3, respectively. The corresponding results
utlet BOD are shown inTables 4 and 5. The number o

nput variables used to develop each model is given
fter its name. These results indicate that using PL
educe the number of network inputs improves the a

BOD)

R̄2 ± s MSE± sa

Ea R2 MSEa

0.5 54.8 18.2 48.6± 5.4 21.5± 3.9
3.0 54.5 13.6 48.9± 4.9 19.6± 5.2
3.4 53.2 13.9 48.4± 4.3 19.9± 5.2

9.9 55.4 15.5 48.4± 6.1 20.0± 4.6
7.9 55.6 13.7 49.2± 5.5 22.2± 7.5
8.4 54.8 13.8 48.2± 5.8 22.2± 7.5

lized data.
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Table 3
Validation and test results of the second-order FLN models and data set 1 (inlet BOD)

Model Validation Test R̄2 ± s MSE± sa

R2 MSEa R2 MSEa R2 MSEa

Steady-state modeling
FLN-8 (p = 45) 34.6 33.5 41.2 36.0 46.3 23.0 40.7± 5.9 30.8± 6.9
PLS–FLN-8 (p = 45) 37.6 39.0 47.5 24.2 38.0 18.8 41.0± 5.6 27.3± 10.5
PLS–FLN-3 (p = 10) 47.3 20.7 43.3 21.6 54.9 13.7 48.5± 5.9 18.7± 4.3

Dynamic modeling
FLN-16 (p = 153) 26.6 62.7 10.8 92.4 22.9 33.6 20.1± 8.3 62.9± 29.4
PLS–FLN-16 (p = 153) 27.5 54.2 10.8 83.3 24.1 33.3 20.8± 8.8 56.9± 25.1
PLS–FLN-3 (p = 10) 47.4 23.3 43.2 27.4 53.9 13.9 48.2± 5.4 21.5± 6.9

p: number of parameters estimated during training.
a These results have to be multiplied by 10−4 to obtain MSE values for normalized data.

Table 4
Validation and test results of the first-order FLN models and data set 1 (outlet BOD)

Model Validation Test R̄2 ± s MSE± sa

R2 MSEa R2 MSEa R2 MSEa

Steady-state modeling
FLN-8 (p = 9) 37.6 20.6 27.4 26.1 38.8 25.2 34.6± 6.3 24.0± 3.0
PLS–FLN-8 (p = 9) 42.2 21.7 30.1 26.9 39.7 33.2 37.3± 6.4 27.3± 5.8
PLS–FLN-3 (p = 4) 41.3 23.1 27.9 28.0 38.7 34.8 36.0± 7.1 28.6± 5.9

Dynamic modeling
FLN-16 (p = 17) 39.2 20.6 29.8 25.2 44.8 25.0 37.9± 7.6 23.6± 2.6
PLS–FLN-16 (p = 17) 41.2 21.0 34.9 23.1 47.8 39.2 41.3± 6.5 27.8± 10.0
PLS–FLN-3 (p = 4) 41.7 21.6 30.6 22.6 41.6 21.3 38.0± 6.4 21.8± 0.7

p: number of parameters estimated during training.
a These results have to be multiplied by 10−4 to obtain MSE values for normalized data.

racy of the second-order FLN models. For first-order FLN,
modest improvement in the accuracy of validation and test
data sets is apparent using the PLS technique to preprocess
inputs.

MLP models were developed next. The variation in MSE
as a function of the number of hidden neurons was used to
identify the best MLP and PLS–MLP topologies. The ratio of
learning data to validation data was 4:1.Tables 6 and 7show
the best results and model structures for inlet and outlet BOD,
respectively; the number of input variables used to develop
each model is given right after its name. In this case, PLS did
not improve the MLP nonlinear mapping.

Despite the use of the validation data set to tune the main
MLP design parameter (number of nodes in the hidden layer),
significant differences between validation and test results are
only observed in MLP models and outlet BOD prediction.

A closer examination ofTables 2–7reveals that for both
FLN and MLP approaches, dynamic modeling gives the best
results for outlet BOD prediction, in contrast to inlet BOD.
The relationship between the outlet BOD and the inlet vari-
ables is indeed influenced by the biological complexity and
physical structure of the aerated lagoon. These results agree
with earlier results obtained using linear regression tech-
niques[8].

Table 5
Validation and test results of the second-order FLN models and data set 1 (outlet BOD)

Model Validation Test R̄2 ± s MSE± sa

R2 MSEa R2 MSEa R2 MSEa

Steady-state modeling
FLN-8 (p = 45) 36.3 26.0 28.2 36.1 36.0 32.9 33.5± 4.6 31.7± 5.2
PLS–FLN-8 (p = 45) 45.3 24.7 30.4 46.7 41.2 32.2 39.0± 7.7 34.5± 11.2
PLS–FLN-3 (p = 10) 47.1 22.1 34.3 34.2 40.2 40.4 40.5± 6.4 32.2± 9.3

Dynamic modeling
FLN-16 (p = 153) 22.2 67.8 10.4 47.6 5.5 87.2 12.7± 8.6 67.5± 19.8
PLS–FLN-16 (p = 153) 18.6 64.8 21.1 55.0 14.5 118.0 18.1± 3.3 79.3± 33.9
PLS–FLN-3 (p = 10) 47.2 21.4 34.8 21.2 47.2 21.2 43.1± 7.2 21.3± 0.1

p
norma
: number of parameters estimated during training.
a These results have to be multiplied by 10−4 to obtain MSE values for
 lized data.
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Table 6
Validation and test results of the MLP models and data set 1 (inlet BOD)

Model Validation Test R̄2 ± s MSE± sa

R2 MSEa R2 MSEa R2 MSEa

Steady-state modeling
MLP-8 (n = 10,p = 101) 60.1 9.0 59.8 11.1 65.3 10.3 61.7± 3.1 10.1± 1.1
PLS–MLP-8 (n = 4,p = 41) 46.9 12.6 44.4 16.7 54.5 13.8 48.6± 5.3 14.4± 2.1
PLS–MLP-3 (n = 10,p = 51) 44.2 13.6 40.9 22.3 53.0 17.2 46.0± 6.3 17.7± 4.4

Dynamic modeling
MLP-16 (n = 8,p = 145) 52.0 11.1 55.5 12.3 55.6 13.4 54.4± 2.1 12.3± 1.2
PLS–MLP-16 (n = 4,p = 73) 51.0 13.4 47.2 15.5 42.1 17.8 46.8± 4.5 15.6± 2.2
PLS–MLP-3 (n = 10,p = 51) 46.6 12.4 37.1 18.2 56.0 13.2 46.6± 9.5 14.6± 3.1

p: number of parameters estimated during training;n: number of neurons in hidden layer.
a These results have to be multiplied by 10−4 to obtain MSE values for normalized data.

Table 7
Validation and test results of the MLP models and data set 1 (outlet BOD)

Model Validation Test R̄2 ± s MSE± sa

R2 MSEa R2 MSEa R2 MSEa

Steady-state modeling
MLP-8 (n = 8,p = 81) 49.8 16.6 30.7 24.5 46.1 23.6 42.2± 10.1 21.6± 4.3
PLS–MLP-8 (n = 8,p = 81) 37.8 22.0 25.1 32.5 33.1 32.8 32.0± 6.4 29.1± 6.2
PLS–MLP-3 (n = 6,p = 31) 39.7 43.3 29.8 59.1 35.6 57.3 35.0± 5.0 53.2± 8.6

Dynamic modeling
MLP-16 (n = 3,p = 55) 56.7 14.4 35.6 23.7 47.9 23.1 46.7± 10.6 20.4± 5.2
PLS–MLP-16 (n = 6,p = 109) 49.4 17.5 32.7 27.4 31.0 31.0 37.7± 10.2 25.3± 7.0
PLS–MLP-3 (n = 6,p = 31) 43.4 44.1 35.2 35.2 49.2 33.1 42.6± 7.0 37.5± 5.8

p: number of parameters estimated during training;n: number of neurons in hidden layer.
a These results have to be multiplied by 10−4 to obtain MSE values for normalized data.

Considering both validation and test results, the steady-
state MLP model with 10 hidden nodes gives the best
predictions for inlet BOD. For outlet BOD prediction, test
results indicate that the dynamic MLP with three nodes and
PLS–FLN with three LVs are the best models. However,
validation results indicate that MLP gives the best outlet
BOD prediction performance.

Comparisons of the best models for inlet and outlet BOD
are shown inFig. 2 for the validation and test sets. Both
the slope and the correlation coefficient for the straight lines
indicate good agreement between predictions and the data.

Figs. 3 and 4compare predicted and measured values for both
models and for the validation and test sets. It can be seen that
these models can reproduce the overall variation observed in
the bioprocess for the period considered, especially for the
case of inlet BOD prediction. More than 90 and 85%, for inlet
and outlet BOD, respectively, of the data contained relative
deviations of calculated from measured values smaller than
10% for both output variables. The time series plots of the
residuals do not appear to have any systematic structure, in-
dicating that the models fit the data well. There does seem to
be a slight tendency for negative deviations inFig. 2for small

F per an ccor
( mic ML
ig. 2. Relation between predicted vs. measured BOD (solid line). Up
a) steady-state MLP model with 10 nodes for inlet BOD and (b) dyna
d lower dashed lines indicate the 95% prediction estimation interval ading to
P model with three nodes for outlet BOD.
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Fig. 3. Time series plot of (a) measured and predicted inlet BOD for steady-state MLP model with 10 nodes and (b) residuals—upper and lower dashed lines
indicate the 95% confidence interval.

Fig. 4. Time series plot of (a) measured and predicted outlet BOD for dynamic MLP model with three nodes and (b) residuals—upper and lower dashed lines
indicate the 95% confidence interval.
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Table 8
Validation results of the FLN and MLP models and data set 2 (inlet and outlet BOD)

Inlet BOD Outlet BOD

Model R2 MSEa Model R2 MSEa

Steady-state models from data set 2 FLN-12 (p = 13)b 48.7 15.2 FLN-12 (p = 13)b 57.7 18.3
PLS–FLN-12 (p = 13)b 48.7 15.2 PLS–FLN-12 (p = 13)b 68.4 19.2
PLS–FLN-4 (p = 5)b 48.2 14.6 PLS–FLN-4 (p = 5)b 71.3 21.2
FLN-12 (p = 27)c 0.2 105.0 FLN-12 (p = 31)c 7.2 26.9
PLS–FLN-12 (p = 29)c 16.2 62.8 PLS–FLN-12 (p = 31)c 9.9 87.2
PLS–FLN-4 (p = 15)c 38.3 33.8 PLS–FLN-4 (p = 15)c 63.7 23.6
MLP-12 (n = 3,p = 43) 66.0 10.5 MLP-12 (n = 3,p = 43) 66.0 4.1
PLS–MLP-12 (n = 3,p = 43) 62.5 11.6 PLS–MLP-12 (n = 3,p = 43) 74.4 6.3
PLS–MLP-4 (n = 2,p = 13) 67.5 9.7 PLS–MLP-4 (n = 6,p = 37) 74.8 5.3

Best model from data set 1 MLP-8 (n = 10,p = 101) 81.3 6.9 MLP-16 (n = 3,p = 55) 69.7 6.8

p: number of parameters estimated during training;n: number of neurons in hidden layer.
a These results have to be multiplied by 10−4 to obtain MSE values for normalized data.
b First-order FLN.
c Second-order FLN.

values of measured inlet and outlet BOD. This may indicate
that a different model is necessary to provide more accurate
predictions for small BOD values.

4.2. Modeling data set 2

The FLN and MLP results for inlet and outlet BOD are
shown inTable 8. The number of input variables used to de-
velop each model is given right after its name. The prediction
results are presented in terms of the multiple correlation co-
efficient (R2, in %) and mean square error (MSE) for one
validation data set that consisted of 15 samples from data set
2. The prediction results for this reduced data set are also
shown for the best inlet and outlet BOD models developed
from data set 1.

The performance of both first-order FLN and MLP models
is substantially improved for outlet BOD prediction using the
reduced PLS input data set. On the other hand, first-order FLN
and MLP models show modest improvement in inlet BOD
prediction in the same situation. The most notable improve-
ment inR2 and MSE occurs for second-order FLN models.
In this case, the FLN method is not very good when the orig-
inal variables are its inputs, but its prediction performance is
significantly improved when only the most significant LVs
are used.
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4.3. Neural network versus multiple linear regression
approaches

Tables 2 and 3 of Part I[8] show the results obtained for
inlet and outlet BOD prediction, respectively, using multi-
variate regression techniques and data set 1, while Table 4 of
Part I[8] shows the results for data set 2.

Considering the results obtained using data set 1, it can be
observed that the MLR model performs slightly better than
any FLN model for inlet BOD prediction. The same result
occurs when the most important LVs are used for either PLS
or FLN modeling. For outlet BOD prediction, no significant
difference is observed between MLR and the FLN models;
but the PLS–FLN models of first- and second-order perform
slightly better than the PLS model, mainly for dynamic mod-
eling.

The most significant improvement in inlet and outlet BOD
prediction is observed when MLP modeling is used instead of
MLR. PLS–MLP models with three LVs only perform better
than PLS models for outlet BOD prediction.

For data set 2, the PLS approach for input reduction pro-
vided better results for neural networks, but was less success-
ful for linear regression techniques.

It should be noted that, in theory, using an infinite number
of independent variables to explain the change in a depen-
d 2 g
d d
a e
u use it
w ters
a s
i sion
r ease
i is no
s tive
a work
m ually
The best validation results are obtained using
LS–MLP model with two and six hidden nodes for in
nd outlet BOD prediction, respectively. Nevertheless
est model obtained for data set 1, MLP-8, results in b

nlet BOD predictions than all of the models developed f
ata set 2.

For outlet BOD, the PLS–MLP model with six nodes
ata set 2 shows better results than those obtained wi
est model for data set 1. In any event, it is surprising tha
odels constructed with such a reduced number of sam

an predict reliable values of inlet and outlet BOD, espec
n this case in which only historical data are available.
ent variable would result in anR of one for the modelin
ata set. In other words, theR2 value can be manipulate
nd should be suspect. The adjustedR2 [29] value can b
sed as an attempt to correct this shortcoming, beca
ill not always increase when additional model parame
re added. In contrast toR2, the adjustedR2 only increase

f the additional model parameters improve the regres
esults significantly in order to compensate for the incr
n regression degrees of freedom. Nevertheless, there
imilar statistical parameter to perform reliable compara
nalyses of the predictive performances of neural net
odels, and the methods proposed in the literature us
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lead to contradictory results. As is done in this paper, the
comparative analysis of statistical and neural network mod-
els should be based onR2 values estimated from the validation
(and test) data sets.

5. Conclusions

This research was motivated by the complexity of model-
ing bioprocesses of industrial wastewater treatment. Artificial
neural networks were developed through the use of universal
approximators (sigmoidal MLP networks) or linear combi-
nations of expanded input variables (monomers at FLN) for
modeling the inner mapping between input and output vari-
ables.

Comparing the FLN and MLP approaches with the ap-
proaches proposed in this paper, PLS–FLN and PLS–MLP,
respectively, when a considerable number of samples is
available (data set 1), it can be seen that, although PLS did
not improve the MLP nonlinear mapping, it did improve the
second-order FLN for both outlet and inlet BOD prediction.
No significant differences are observed between FLN and
PLS–FLN results using first-order monomers.

One of the biggest challenges of this research was to deal
with the high incidence of missing values in the recorded data,
a ly a
s bined
u pre-
d ntly
h rately
F st of
a m for
i

ent
i net-
w ech-
n ents
i dy-
s n, is
c ed by
t

any
o ge of
t ial ac-
t ical
t

ling
t mode
o trial
p

A

No.
9 er of

Brazil for providing the industrial data, and Edson Guaracy
Lima Fujita and Aline C. Costa (UNICAMP) and Fred Lo-
quasto III (UCSB) for their valuable comments.
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